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istvan.racz@fuw.edu.pl & racz.istvan@wigner.mta.hu

Faculty of Physics, University of Warsaw, Warsaw, Poland
Wigner Research Center for Physics, Budapest, Hungary

Supported by the POLONEZ programme of the National Science Centre of Poland which
has received funding from the European Union‘s Horizon 2020 research and innovation

programme under the Marie Sk lodowska-Curie grant agreement No. 665778.

Institute of Theoretical Physics, University of Warsaw
Warsaw, 11 October 2018
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The main message and the program for today:

The main message:

some of the arguments and techniques developed originally and
applied so far exclusively only in the Lorentzian case do also apply
to Riemannian spaces

(!) there will be a number of open research problems mentioned

The program for today:

plans and aims for the rest of the course

The Einstein-matter equations as non-linear wave equations:
generalized harmonic gauge with matter fields

symmetric hyperbolic systems: global existence and uniqueness
to linear systems; uniqueness to generic systems

the viewgraphes will be uploaded time-to-time to the page
www.fuw.edu.pl/∼iracz
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Plans and aims for the rest of the course:

1 Kinematical background: (M, gab) (!) Lorentzian or Euclidean signature
notations and conventions
the basic tools are n+ 1 decompositions: no use of field equations

2 The propagation of the constraints
Einsteinian spaces: (M, gab)
Bianchi identity
no gauge condition: arbitrary choice of foliations & “evolutionary” vector field

3-4 Constraints as evolutionary systems
conformal method: semilinear elliptic system
parabolic-hyperbolic system

... global solution to the involved parabolic equation
strongly hyperbolic system

... study of near Kerr configurations

5 The construction of initial data for binary black holes

parabolic-hyperbolic system
superposed Kerr-Schild, with initial-boundary value problem

... no use of ad hoc boundary conditions in the strong field regime

... there is an unprecedented full control of the ADM charges
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Plans and Aims II.:

6-8 Time evolution and the degrees of freedom
intimate relations between various parts of Einstein’s equations
partly and/or fully constrained evolutionary schemes
hyperbolic-hyperbolic systems

... gauge choices

... the conformal structure

... gravitational degrees of freedom

9-10 Geroch’s quasi-local argument and the positive mass theorems
quasi-local quantities
the Hawking-Geroch mass
variation of the Geroch mass

... construction of initial data with non-decreasing Geroch mass

11-12 Dynamical horizons: black hole thermodynamics with ‘dynamics’
dynamical black holes
dynamical horizons and their geometrical properties
variation of physical and geometrical quantities

... vary them along dynamical horizons

... derive the dynamical first law of black hole thermodynamics
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The main conceptual issue:

Assume that suitable initial data is given on some initial data surface Σ:

As a fixed background/arena does not exist in GR neither the base manifold M
(where the solution manifest itself) nor the metric gab (satisfying the Einstein
equations) is know in advance to solving the pertinent Cauchy problem

Initial data surface: Spacetime:
(Σ, hij ,Kij) (M, gab)

(satisfying the constraints) (satisfying the Einstein equations)

n

n
n

a

a

a

n
a

n
a

n
a

Σ ϕ[Σ]

ϕ

(hij ,Kij) −→ ϕ∗ −→ (ϕ∗hij , ϕ∗Kij)
(induced metric, extrinsic curvature)
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Gravity-matter equations as non-linear wave equations:

Generalized harmonic gauge with matter fields I.

Yvonne Choquet-Bruhat 1952 (..., James York, Helmut Friedrich,...)

spacetime: (M, gab): now(!) Lorentzian signature (−,+, . . . ,+)

matter fields: as we have gab we may assume ψ
(i)a...b, i = 1, . . . , I,

(0, li) type tensor fields (shorthand: ψ
(i)

), satisfying

∇a∇aψ(i)
= F

(i)

(
ψ

(j)
,∇cψ(j)

, gef

)
where F

(i)
are (0, li) type tensorial expressions which depend

smoothly on the indicated variables; e.g.: KG, Maxwell Aa, YMH, ∃...

equations for the metric

Rab = Rab

(
ψ

(i)
,∇cψ(i)

, gef

)
Rab: (0, 2) type tensorial expressions which depend smoothly on

the indicated variables & ∇a(Rab − 1
2
gabR) = 0 (integ.cond.!)

István Rácz (University of Warsaw & Wigner RCP) UW-ITP, 11 October 2018 6 / 19



Gravity-matter equations as non-linear wave equations:

Generalized harmonic gauge with matter fields II.

special case: Einstein’s equations with cosmological constant

Rab

(
ψ

(i)
,∇cψ(i)

, gef

)
= 8π

(
Tab − 1

2
gabT

)
− Λ gab

solubility only for PDEs deduced from tensor equations ...
how do they look like (?) in arbitrary local coordinates xα

the Ricci tensor

Rαβ = −1
2
gµν∂µ∂νgαβ + gδ(α∇β)Γ

δ +H ′αβ(gερ, ∂γgερ)

Γµ = gαβΓµαβ (!transforms as vectors!) ∇αΓδ = ∂αΓδ + ΓδαεΓ
ε

∇a∇aψ(i)
in loc.coords. xα contain gµν∇µΓγνα, can be written as

gµν∇µΓγνα = Rα
γ +∇αΓγ +H∗α

γ(gερ, ∂γgερ)

where H ′αβ and H∗α
γ are C∞ functionals of indicated variables
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Gravity-matter equations as non-linear wave equations:

Generalized harmonic gauge with matter fields III.

matter equations

∇µ∇µψ(i)
= gµν∂µ∂νψ(i)

−
li∑
k=1

(
ψ

(i)

)
[αk]
δ

(
Rαk

δ +∇αkΓ
δ
)

+

+H′
(i)

(gερ, ∂γgερ, ψ(j)
, ∂γψ(j)

)

where (ψ
(i)

)
[αk]
δ stands for ψ

(i)α1...αk−1δαk+1...αli
and H′

(i)
...

equations for the coupled gravity-matter system

gµν∂µ∂νψ(i)
=

li∑
k=1

(
ψ

(i)

)
[αk]
δ ∇αkΓ

δ +H
(i)

(gερ, ∂γgερ, ψ(j)
, ∂γψ(j)

)

gµν∂µ∂νgαβ = 2gδ(α∇β)Γ
δ +Hαβ(gερ, ∂γgερ, ψ(j)

, ∂γψ(j)
)

if we knew Γδ we would have a well-posed initial value problem
(∃, unique, continuous dep. on in.dat., causal) for ψ

(i)
és gαβ
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Gravity-matter equations as non-linear wave equations:

Generalized harmonic gauge with matter fields IV.

BUT we do not know Γδ: reduced equations Γδ → f δ : M → R
∇αΓδ → ∇αf

δ R
(red.)
αβ = Rαβ − gδ(α∇β) [Γδ − f δ]

f δ is not completely arbitrary: given initial data on Σ for
[[gαβ, ġαβ];ψ

(i)
, ψ̇

(i)
] , Γδ és ∂tΓ

δ can be evaluated. choose f δ :

f δ = Γδ and ∂tf
δ = ∂tΓ

δ

what does the relation f δ = Γδ mean?

∇µ∇µx
δ = gµν∇µ(∂νx

δ) = gµν [ ∂µ(δν
δ)− Γεµν(δν

δ) ] = −Γδ

setting f δ = Γδ is equivalent to singling out specific local coord.s
xα (gen. harmonic): using initial data on Σ for [xα, ẋα] such that

{dxα} are linearly independent: ∇µ∇µx
δ = −f δ
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Gravity-matter equations as non-linear wave equations:

Generalized harmonic gauge with matter fields V.

suppose we have solutions gαβ, ψ
(i)

, xα to the reduced equations

recall
0 = R

(red.)
αβ −Rαβ =

(
Rαβ − gδ(α∇β))[Γ

δ − f δ]
)
−Rαβ

introducing the variable Dδ = Γδ − f δ

Rαβ −Rαβ = gδ(α∇β)Dδ

∇α∇αψ(i)
−F

(i)
=

li∑
k=1

(
ψ

(i)

)
[αk]
δ ∇αkDδ

using the twice contracted Bianchi identity ∇a
[
Rab − 1

2gabR
]

= 0, and the

integrability condition ∇a
[
Rab − 1

2gabR
]

= 0, we get for Dδ = Γδ − f δ

∇µ∇µDδ +Rδ
ν Dδ = 0

the solution to the reduced equations is solution to the original problem �
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Symmetric hyperbolic systems

consider equations of the form

A0(t, x,u) ∂tu +Ai(t, x,u) ∂iu + B(t, x,u) = 0 (∗)

it is a system of equations for N ∈ N real variables which are
collected into a vector-valued function u.

these variables will be defined on appropriate subsets of R× Rn.
(n will always stand for the ‘spatial’ dimension. 4-dim spacetime: n = 3.)

a point of R× Rn will also be signified by the Cartesian
coordinates (t, x1, . . . , xn), or in shorthand by (t, x).

this system of equations is called first order symmetric hyperbolic
system (FOSH) if the coefficient matrices Aα are symmetric, and
if A0 is positive definite.

it is quasi-linear as it is linear in the first order derivatives of u
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First order linear symmetric hyperbolic systems:

Global existence and uniqueness

Aα(t, x) ∂αu + E(t, x)u + F(t, x) = 0 (∗∗) (or)

(Aα(t, x)) IJ ∂αuJ + (E(t, x)) IJ uJ + (F (t, x)) I = 0 (∗∗)

where
(Aα(t, x)) IJ and (E(t, x)) IJ are N ×N matrices such that

(Aα(t, x)) IJ = (Aα(t, x)) JI are symmetric and

(A0(t, x)) IJ is positive definite, i.e. (A0(t, x)) IJvI vJ > 0 for ∀ vI 6= 0

Conditions on the coefficients:
(A0(t, x)) IJ is uniformly positive definite: (A0(t, x)) IJvI vJ ≥ C0 |v|2

for ∀ vI 6= 0 and for some C0 > 0 constant

∂α(Aα(t, x)) IJ and (E(t, x)) IJ are uniformly bounded

(F (t, x)) I is square integrable: on each t = const level surface in R× Rn
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First order linear symmetric hyperbolic systems:

The strategy:

energy of u at t = const

E (t,u) := 1
2

∫
Σt

[ (A0(t, x)) IJuI uJ ] dnx

first we show that E (t,u) satisfy the energy equality

E (t,u) = E (t0,u) +

∫ t

t0

[ ∫
Σt′

(
1
2
(∂αAα IJ)uIuJ

− (E IJ)uIuJ − (F J)uJ

)
dnx
]

dt′

second: the energy equality implies an integral energy ineq.

E (t,u) ≤ E (t0,u) +
∫ t
t0

[
C1(t′) E (t′,u) + C1(t′) (E (t′,u))1/2

]
dt′

third we show that the energy remains bounded
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First order linear symmetric hyperbolic systems:

The energy equality:

note first
uJ Aα IJ(∂αuI) = uI Aα IJ(∂αuJ) thereby

uJ Aα IJ(∂αuI) = 1
2
Aα IJ ∂α(uIuJ)

= 1
2
∂α(Aα IJuIuJ)− 1

2
uIuJ (∂αAα IJ)

e.g. if the initial data is of compact support (fall off...) the
integral if the total spatial divergence ∂iAi IJuIuJ vanishes

using (Aα) IJ ∂αuJ + (E) IJ uJ + (F ) I = 0∫ t

t0

{∫
Σt′

1
2

[
∂0(uIuJA0 IJ)− uIuJ (∂αAα IJ)

]
− (E IJ)uIuJ − (F I)uI

)
dnx
}

dt′
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First order linear symmetric hyperbolic systems:

The energy inequality:

now we have that E (t,u) satisfy the energy equality

E (t,u) = E (t0,u) +

∫ t

t0

[ ∫
Σt′

(
1
2
(∂αAα IJ)uIuJ

− (E IJ)uIuJ − (F J)uJ
)

dnx
]

dt′

∂α(Aα(t, x)) IJ and (E(t, x)) IJ are uniformly bounded and

(F (t, x)) J is square integrable: (!) on each t = const surface

Cauchy-Schwarz inequality∣∣∣ ∫Σt′
(F J)uJ dnx

∣∣∣ ≤ (∫Σt′
|u|2 dnx

)1/2 (∫
Σt′
|F|2 dnx

)1/2

implies the integral energy ineq.

E (t,u) ≤ E (t0,u) +
∫ t
t0

[
C1(t′) E (t′,u) + C2(t′) (E (t′,u))1/2

]
dt′
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First order linear symmetric hyperbolic systems:

The global boundedness of the energy:
we have now the integral energy inequality

E (t,u) ≤ E (t0,u) +
∫ t
t0

[
C1(t′) E (t′,u) + C2(t′) (E (t′,u))1/2

]
dt′

Grönwall’s lemma: consider a differential equation ∂tz(t) = f(t, z(t)) ,

assume that f(t, y) is function that is continuous (C0) in t and Lipschitz type
(C1−) in y; if for a C1 function y(t) both of the inequalities hold

∂ty ≤ f(t, y), y(t0) ≤ z(t0) then y(t) ≤ z(t)

this, in particular, implies that if for y(t), with C1(t), C2(t) ≥ 0,

y(t) ≤ y(t0) +
∫ t
t0

[
C1(t′) y(t′) + C2(t′) (y(t′))1/2

]
dt′

and y(t0) ≤ z(t0) then y(t) ≤ z(t) , where z(t) satisfies the corresponding

equality

applying this to y(t) = E (t,u) for the corresponding z(t) we get (t dep. supp.)

z′ = C1 z + C2 z
1/2 or by setting z = ζ2 & ζ0 = y

1/2
0 we get 2 ζ′ = C1 ζ + C2

with solution that is finite for any t = const: note: uniqueness C2 = 0 and y0 = 0
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Symmetric hyperbolic systems

Uniqueness of solutions in the generic case:

A0(t, x,u) ∂0u +Ai(t, x,u) ∂iu + B(t, x,u) = 0 (∗)

assume that u is a solution to (*):
a hypersurface Σ is called to be spacelike with respect to a solution u of
(*) if for any co-normal one-form nα that is orthogonal to Σ, i.e. nαX

α = 0
for any any X ∈ T Σ, the matrix nαAα is positive definite.

this notion of being spacelike has a priori nothing to do with the usual one
applied in general relativity. nevertheless, the two concepts can be shown to
be closely related in the cases considered earlier: u ... ‘�′... = gµν∂µ∂ν ...

assume that R× Rn is foliated by ‘spacelike’ surfaces Σt

lemma: to any C1 function F : (R× Rn)× RN → RN there always exist a
C0 function H : (R× Rn)× RN × RN → R such that

F (t, x,u1)−F (t, x,u2) = (u1 − u2) H (t, x,u1,u2)

for N = 1: F (u1)− F (u2) = (u1 − u2)
∫ 1

0
F ′[ t(u1 − u2) + u2 ] dt,

for general N : one may prove it by induction
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Symmetric hyperbolic systems

Uniqueness of solutions:

A0(t, x,u) ∂0u +Ai(t, x,u) ∂iu + B(t, x,u) = 0 (∗)

(!) Aα and B at least C1 functions of their indicated variables

assume that u1 and u2 are solutions to (*) such that the Σt

surfaces are spacelike with respect to u1,u2, and u1|Σ0 = u2|Σ0

in virtue of the above lemma there should exist C0 functions
Cα and D such that

Aα(t, x,u1)−Aα(t, x,u2) = Cα(t, x,u1,u2) (u1 − u2)

B(t, x,u1)− B(t, x,u2) = D(t, x,u1,u2) (u1 − u2)

it follows then from the foregoings that for ∆u = u1 − u2

Aα(u1) ∂α(∆u) + [ Cα(u1,u2) (∂αu2) +D(u1,u2) ] (∆u) = 0

is a linear homogeneous first order system �
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That is all for now...
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